日本計量新報 2011年3月27日 (2863号)3面掲載
震度とマグニチュード 地震の大きさを表す単位今回の東北地方太平洋沖地震は、マグニチュード9.0、最大震度7。世界で4番目の大きさであり、国内でも観測史上最大規模とされる。 震度とマグニチュードは、地震発生時に気象庁により発表される。どちらも地震の大きさを表す単位であるが、その内容はどう違うのだろうか。 震度とマグニチュードの違い震度はある場所(地点)での地震による揺れの強さを、マグニチュード(M)は地震そのもののエネルギーの大きさを表す。電球に例えると、電球の明るさをあらわす値がマグニチュード、電球から離れたある場所の明るさが震度に相当する。 マグニチュードの小さい地震でも震源からの距離が近ければ揺れは大きくなり、震度が大きくなる。逆に、マグニチュードの大きな地震でも震源からの距離が遠いと揺れは小さく、震度も小さくなる。電球が明るくても、遠くなると暗くなる関係と同じであるといえる。 マグニチュードとエネルギーマグニチュードと地震波の形で放出されるエネルギーとの間には、マグニチュードの値が1大きくなるとエネルギーは約32倍になるという関係がある。2増えると、エネルギーは32倍の32倍、すなわち約1000倍になる。 マグニチュード9.0の地震ひとつで、マグニチュード8.0の地震32個分、マグニチュード7.0の地震1000個分のエネルギーに相当する。 モーメントマグニチュードと気象庁マグニチュードマグニチュードは、1930年、米国の地震学者チャールズ・リヒターにより考案された。 その後、より地震の姿を正確に把握するという目的のもと、さまざまなマグニチュードの計算方法が生まれた。 よく聞かれる「モーメントマグニチュード(Mw)」は、1977年に日本の地震学者、金森博雄らが考案。地震は地下の岩盤がずれて起こるものであるが、モーメントマグニチュードとは、この岩盤のずれの規模(ずれ動いた部分の面積×ずれた量×岩石の硬さ)をもとにして計算する。 普通のマグニチュードは、地震計で観測される波の震動から計算されるが、規模が大きな地震になると岩盤のずれの規模を正確に表せない。 その点、モーメントマグニチュードは物理的な意味が明確で、大きな地震に対しても有効だという利点がある。 ただし、高性能の地震計のデータを使った複雑な計算が必要なため、地震発生直後に行う地震の規模の推定には使えないこと、小規模の地震では精度よく計算するのが困難なことなどが欠点として挙げられる。 日本の気象庁では、このモーメントマグニチュードと似ていながら、若干異なる「気象庁マグニチュード」を使用している。 気象庁では、1970年代後半から、地震時の地面の動き(変位)の最大値から計算される「変位マグニチュード」と、地面の動く速度から求められる「速度マグニチュード」を組み合わせて計算している。 その後、小規模な地震の場合にモーメントマグニチュードとの値のずれが大きくなるることがわかったため、計算方法を2003年に改定している。 マグニチュードや震度は世界共通か外国の地震のマグニチュードが、同じ地震なのに新聞によって異なる値になっている場合がある。これは、マグニチュードの定義は大まかにいえば世界共通であるが、使っている地震計や地震観測網が異なるためである。 一方、震度は、その国の建物の壊れやすさなどによって異なるため、国によって違う。 日本では10階級で表し(表)、震度計で観測する。外国では主に、MM震度階(モディファイド・メルカリ・スケール〔改正メルカリ震度階〕)という12階級の表現が使用されている。これは体感や被害による震度観測である。 【参考文献】 |